

### **The SCIP Software Industry Study**

Avron Barr and Shirley Tessler Stanford Computer Industry Project http://www-scip.stanford.edu/scip/

> SEPG '97 March 19, 1997

**Stanford Computer Industry Project** 

The Stanford University Computer Industry Project

A. P. Sloan Foundation, Industry Studies

SCIP's Corporate Partners Program

- Andersen Consulting
- Sritish Petroleum
- Citibank
- CMP Media
- Daiwa Inst. of Research
- \* EDS
- Ernst & Young
- Fujitsu Limited

- Merrill Lynch
- Microsoft
- \* Montgomery Securities
- Moore Corporation
- Philips
- Sumitomo Corporation
- Symantec
- \* Toshiba America

# SCIP's Research Initiatives — Investigating Trends and Issues

- ◆ IT in use technology adoption
- Global IT services
- Information Age organizations
- Organization and strategy for rapid innovation in product management
- Networks
- Software

# The Software Industry Programming & Resultant Value Chain

|                  | Worldwide<br>Expenditures | Impact,<br>Value                                 | Examples                                                                        |
|------------------|---------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|
| Publishing       | \$92B                     | Tools<br>Education<br>Entertainment              | Microsoft, Oracle, Nintendo                                                     |
| Services         | \$170B                    | 25% of MIS?                                      | Andersen, IBM, TRW                                                              |
| In-house/<br>MIS | \$700B+                   | Productivity<br>Informed ops.<br>Strategic apps. | Payroll, mfg. automation<br>Yield mgt., supply logistics<br>FedEx, home banking |
| Embedded         | ?                         | Functionality<br>Communication                   | Consumer electronics (auto)<br>Complex systems (airplane)                       |



- **'93 Feigenbaum's Study of the Japanese SW** Industry: "Where's the Walkman"
- '93-5 Interviews with 100 Industry "Insiders" Structure, trends and critical issues
- **'95-6 Pilot Survey on SW Product Management**
- '96-7 The Impact of the Global Talent Shortage: On Software Projects, and On the Industry

### **ISSUES That Will Shape the STANFORD STANFORD STANFORD Software Industry**

- Intellectual property: patents, piracy
- Global competition and trade
- Consolidation, distribution & antitrust
- Software quality and systems failures
- Labor supply, immigration & education
- Technology: new markets & new tools
- Software project management practices



## Software Product Management

### **Results of a Pilot Survey**

**Stanford Computer Industry Project** 

# Software Product Management Issues Investigated

- Software Development Practices
  - Team composition
  - Engineering effort, technologies, quality
- Product Management Practices
  - Release/project management
  - Planning: formality, participants, horizon
  - Time-to-market tradeoffs
- Corporate Style
  - Decision-making, communication, outsourcing
  - Salance between engineering and marketing

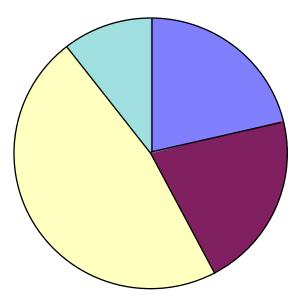
### STANFORD STA

Focus on a particular recent release
Survey pairs of team members

Marketing product manager
Engineering team leader

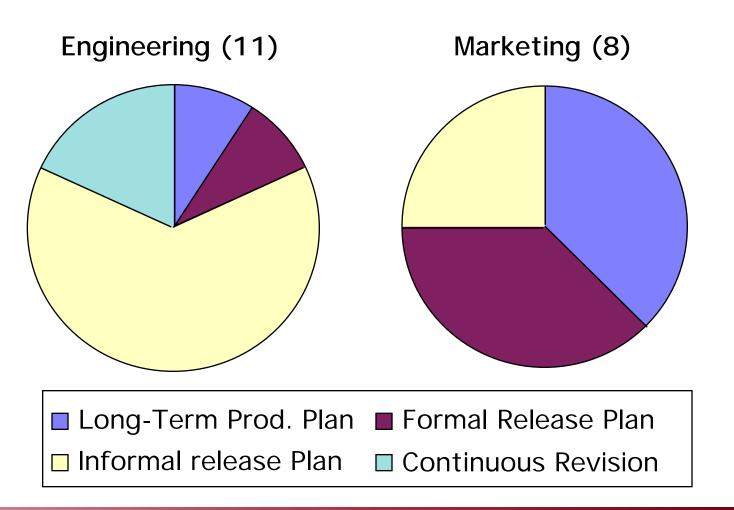
One-hour questionnaires
Follow-up interviews
Firms in different segments




|                       | RDBMS | Call Center | Firms |
|-----------------------|-------|-------------|-------|
| Very Small<br>< \$10M | 1     | 1           | 2     |
| Small<br>\$10-50M     | 2     | 4           | 6     |
| Large<br>> \$100M     | 3     |             | 3     |
| Total                 | 6     | 5           | 11    |

# Requirements Formulation PROJECT

- How formal was the process used to determine the requirements for this release?
  - Long-term product line plan
  - \* Formal marketing requirements document
  - Informal, but before programming started
  - Continuously revised




**Requirements Formulation - Overall** 

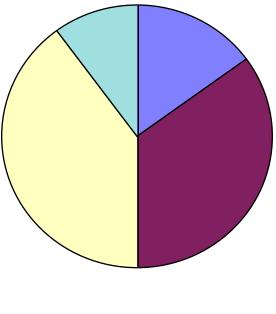


Long-Term Prod. Plan
 Formal Release Plan
 Informal release Plan
 Continuous Revision

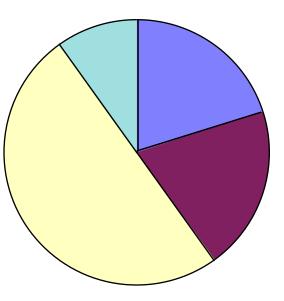
# **Product Requirements Formulation: Different Perceptions**



### What would you do with 3 MOUSTRY MOUSTRY MOUSTRY

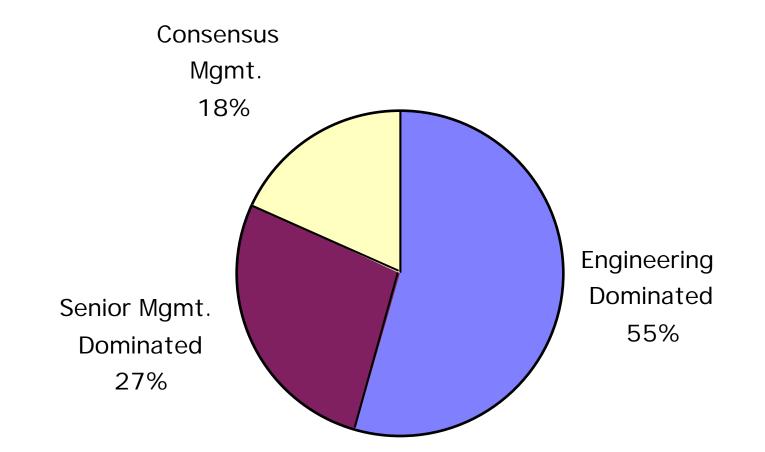

| Engineering                       |     |
|-----------------------------------|-----|
| Testing/QA                        | 36% |
| <ul><li>More beta</li></ul>       | 18  |
| * Docs                            | 18  |
| <ul> <li>Functionality</li> </ul> | 9   |
| Fix bugs                          | 9   |
| <ul><li>Installer</li></ul>       | 9   |
| <ul> <li>Training</li> </ul>      | 0   |
| Performance                       | 0   |

### Marketing


| Functionality                 | 27% |
|-------------------------------|-----|
| ✤ Testing/QA                  | 18  |
| More beta                     | 18  |
| Docs                          | 9   |
| Nothing                       | 9   |
| <ul> <li>Training</li> </ul>  | 0   |
| Performance                   | 0   |
| <ul><li>Installer</li></ul>   | 0   |
| <ul> <li>Marketing</li> </ul> | 0   |
|                               |     |



Last Stage When a Feature Can Be Added




Last Stage When Feature Can Be Dropped



Before Alpha
 Before Beta
 Other





# Second Pilot Survey of Product Management Practices -- 1996

Feedback from 1995 pilot incorporated

 shorter, more focused instrument
 more segments of industry included
 products for business & technical users, consumers

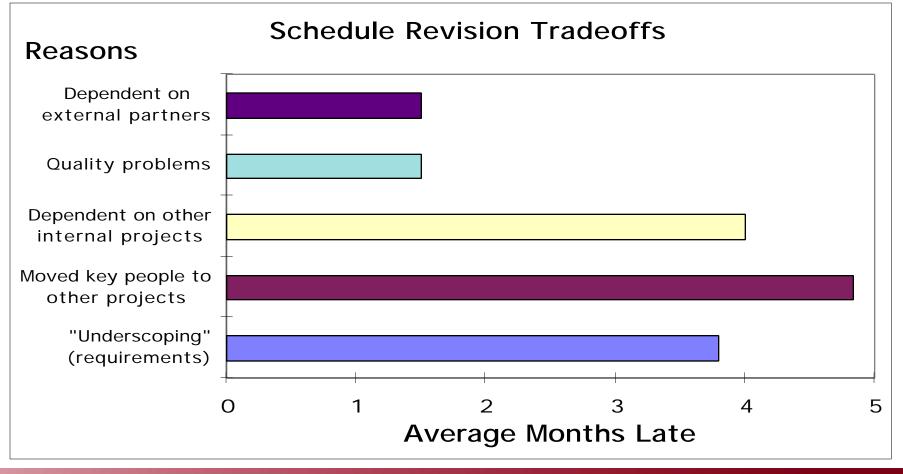
 Web-based instrument tested
 Discussions with software process groups and other academic researchers



## **Companies Surveyed**

|                     | <b>Technical</b><br><b>End User Mkt.</b><br>(IT, Eng or Scientific) | Business<br>End User<br>Mkt. | Firms |
|---------------------|---------------------------------------------------------------------|------------------------------|-------|
| Small<br>< \$20M    | 3                                                                   | 1                            | 4     |
| Medium<br>\$20-200M | 3                                                                   |                              | 3     |
| Large<br>> \$200M   | 3                                                                   | 2                            | 5     |
| Total               | 9                                                                   | 3                            | 12    |




- 1 team on schedule (so far), 17 revised schedules
- Number of times schedule revised
  - Range: 1 time to "constantly"
  - Average: 3 times
- How late to market
  - Range: 1.5 to 12 months
  - Average: 4 months

# Top 5 Reasons for Revision of Release Schedule

- Poor requirements specification
- Moved key people to other projects
- Quality problems
- Dependent on other internal projects
- Dependent on external partners



### Q. Please describe briefly the reasons for the [release] delay:



**Stanford Computer Industry Project** 

# Formality of Planning & Development Process

### Process methodology

- Small companies used formal methodologies
- Larger companies used internally developed methodologies
- \* 2/3 of respondents used something

### Planning

- Formal planning: 16
- No formal planning: 2
- Solution Not the second sec

# Research Issues Arising From the Pilot Survey

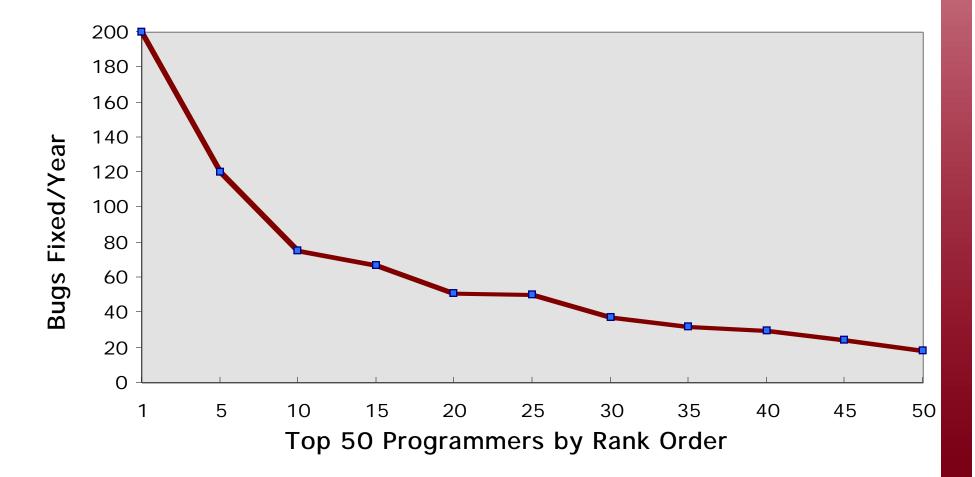
Life cycle planning vs. release planning
 Communication & decision making styles
 Addressing shortfalls in technical talent
 Team management for focus
 Managing external relationships
 Aggressive recruiting and retraining



## The Worldwide Supply of Software Labor

**Stanford Computer Industry Project** 

# There is a Serious Shortage of Software Talent Worldwide


- The ITAA (1977) reports 190,000 open positions
- Reasons for the shortage:
  - **\*** Demand for SW may be growing non-linearly.
  - \* Interest in computing careers has declined.
- The rise in demand was masked for years by the growth of Indian software services and simultaneous massive downsizing in MIS, aerospace/defense and large computer firms.
- The situation will worsen and must be addressed in project planning.





From **Forbes**, December 30, 1996. Sources: Computer Economics, Inc.; based on a survey of 300 managers; The Standish Group International, Inc.; based on a survey of 365 companies

# The Software Labor Pool — The Best are Significantly Better



"Not All Programmers Are Created Equal," G. Edward Bryan, IEEE, 1994

# **Software Labor Shortages:** Who's Getting the Top Talent?

- Software start-ups & boutique services firms
- Software publishers
- R & D (corporate & university)
- VARs, consulting firms, systems integrators
- Software intensive industries (IBM, AT&T...)
- Aerospace systems firms
- Incidental embedded SW (GM, Boeing...)
- Corporate IS, application development
- DoD
- Federal, state & local government

# Will Offshore Sources of Labor Meet Rising Demand?

Will other countries with underutilized engineering talent, as was the case in India, supply a larger percentage of the world's software products and services needs in the future?

### India: A Major Software STANFORD STANFO STANFORD STANFORD STANFORD STANFORD STANFORD STANFOR

- Large supply of engineering talent
  - High quality technical education
  - High prestige for engineers
  - Section 2 Constrained and Section 2 Const
  - Underutilized in domestic economy
- Movement towards more enlightened government policies
- Entrepreneurs created international business
  - Early growth as low-cost provider
  - Now, quality software delivered on time

### Country Comparison: Enabling Factors in Development of SW Export Industry

|                                              | India | Russia | E. Europe | Malaysia | Singapore | China | Japan | Israel | Ireland |
|----------------------------------------------|-------|--------|-----------|----------|-----------|-------|-------|--------|---------|
| Good general engineering education system    | +     | +      | +         |          |           |       | ÷     | +      |         |
| Specific software and systems training       | +     |        |           |          |           |       | ÷     | +      |         |
| Large pool of capable programmers            | +     | +      | +         |          |           | +     | +     |        |         |
| Limited (non-IT) opportunities for engineers | +     | +      |           |          |           |       |       |        |         |
| English language competence                  | +     |        |           |          |           | •     |       | +      | +       |
| Government policies or investment            | +     | •      |           | +        | +         | •     | +     | +      | •       |
| Communications infrastructure                | +     |        |           | +        | +         |       | ÷     | +      | +       |
| Entrepreneurial know-how                     | +     |        |           |          | +         |       | +     | +      | +       |
| Foreign corporate investment                 | +     | +      |           |          | +         | +     | •     |        | + .     |

Strong positive: +

Strong negative: •



- Aggressive recruiting, training and retention of talent if your business depends on software
- Education initiatives to produce more SWE's
- Private and public investment in retraining
- Explore certification of SW professionals
- Encourage immigration of qualified SWE's
- Encourage research in software development technology and methodology
- Undertake detailed industry & labor censuses