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There is an important underlying difference in perspective between Artificial Intelligence
and Neuroscience:  AI studies the way in which systems (computer programs) might
understand such things as scenes, sentences, and problems.  Neuroscience studies an
organic system, the Brain, which is best viewed in terms of perpetually coming to an
understanding, rather than having one.  

The metaphor of computation itself is the new leverage that AI brings to the study of
mind.  However, since the field parted company with Cybernetics and Self-Organizing
Systems research in the mid-1950s, work within AI has focussed primarily on
computational models of "reasoning."  Expert Systems is a hot area of AI research with
important scientific and commercial impact.  The prominence of expert systems research
within AI is a natural consequence of the focus on logical reasoning.

A new, computational Theory of Understandings is sketched that places AI research on
reasoning within a larger framework of mental activity.  A computer system, called
CONSENSYS, is described which, based on this framework, facilitates the process of
"coming to an understanding."  Viewing the function of Mind from the perspective of a
system's coming to an understanding is a powerful idea.  And if mankind has a
problem in need of new ideas and new technology, coming to an understanding is it.

Systems that don't understand are the class of intelligent systems that includes nervous systems,
gene pools, social systems, and ecosystems.  Consider an example of a particular type of social
system which is familiar to all of us:  What is a science?  It is an agreement about
the understanding of a certain set of phenomena: namely, those repeatedly observable phenomena
that constitute the science's corpus of expermimental results.  This understanding includes not just
the methodology, the current theory, and the supporting data:  A science includes the anomalous
results, the conflicting theories and methodologies, the current "hot spots," its own historical
evolution, and even an understanding of its own goals and purpose.

In other words a science is an evolving, but never finished, interpretive system.  And fundamental
to science (unlike most human social endeavors) is its questioning of what it thinks it knows.  A
scientific theory or concept that offers no questions is not interesting and will be replaced by one
that does.  Scientific knowledge is an example of a system that doesn't understand, by its very
definition.  It is a system for coming to an understanding.  This class of systems can be seen as a
very important one indeed.  For example, a gene pool can be viewed as a system for building
a survival-oriented understanding of a never-to-be-understood environment.  And even the
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everyday example of "understanding" another person or a conversation is easily seen to be an
incompletable task.

The nervous system is an organic system of this class.  In relating research in Artificial
Intelligence to Neuroscience, one immediately sees that AI systems are not, yet, systems that don't
understand.  But they are a very important first-order approximation.

The Impact of Expert Systems

Artificial Intelligence is a subfield of Computer Science--the study of computing machines and
their programs.  AI researchers design computer systems that interact with their environment with
some of the traits that characterize intelligence in humans.  The subdisciplines of AI include
work on robotics and vision, on responding to sentences in written and spoken language, on
puzzle and problem solving, and on the tools and concepts of programming itself.

Nowadays, foremost among the subdisciplines of AI is work in an area called Expert Systems.
These are programs that facilitate the extraction of heuristic knowledge from human "experts" in
certain types of fields like medicine.  The resulting programs can then be applied effectively to
problems which the expert never saw, by people who are not themselves experts.  The success of
the field of Expert Systems is apparent--it is the hottest new commercial technology since genetic
engineering and accounts for more than half of the current research funding for AI.  This success
deserves some analysis.  

First of all, the work was a success in the eyes of the scientists involved in its conception because
they accomplished what they said they could accomplish: demonstrating the possibility of "artifical
intelligence" by building computer programs that could solve problems that were hard by
any standards.  For instance, they built programs that analyzed chemical data or interpreted
patients' symptoms in cases that required the best human experts. These programs performed as
well on very hard problems as did their obviously intelligent human couterparts [Lindsay,
Buchanan, Feigenbaum, Lederberg].

Secondly, the commercial potential of these systems is indicated by the number of scientists who
are starting companies in this area and, more dramatically, by the amount of venture capital that is
backing them.  The optimism is well founded--there are demonstrated examples of expert
systems that make (or save) substantially more money than they cost.  And the cost of building
this kind of program is likely to go down rapidly as new generations of tools become available.

But there is a third aspect of the success of expert sytems that is even more important.  The
pioneering work on expert systems by Ted Shortliffe, Randy Davis, Ed Feigenbaum, Bruce
Buchanan and their colleagues in the MYCIN group at Stanford was directly concerned with what
they called "Transfer of Expertise" [Barr, Bennett, and Clancey].  They focussed on making
MYCIN, a medical diagnosis  system, able to explain its reasoning and justify its conclusions.
The key scientific contribution of this work is that there are computational techniques (e.g., rule
chaining) that allow the interactive development of programs which can not only solve problems
but can also examine their own reasoning and make sense of it to people (by  revealing the same
rules that were originally acquired from experts and then used in the system's reasoning).

A word about how this effect was achieved:  One can view the computer as an interpretive system
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that "processes" a fixed repertoire of symbols (its instruction set).  A Programming Environment,
like FORTRAN or PASCAL, translates from a larger repertoire into the computer's native language.
 Every Programming Environment introduces new concepts; sometimes very general ones, and
sometimes those quite specific to the languages users--e.g., the "cells" of a spreadsheet for
business programming [Winograd].  It is the job of the Programming Environent to do all the
bookkeeping so that the programmer can use those concepts naturally.

Expert systems have two parts.  The Knowledge Base contains facts and heuristics about solving
problems in some domain.  It is a kind of program. The Programming Environement is called the
Inference Engine and supports programming at what Allen Newell calls "the Knowledge Level."
In the same way as a FORTRAN programmer writes code to be interpreted by the FORTRAN

compiler (whose behavior he must "internalize"), an expert-systems programmer (called a
Knowledge Engineer) interviews a problem-solver in some domain and then creates a coded
Knowledge Base appropriate for interpretation by his Programming Environment.  The difference
between this "Fifth Generation" program and its FORTRAN precedecessor is that the Inference
Engine does the necessary booking to draw inferences, explain alternatives, and justifications
conclusions.  A traditional program is a procedural description of what is to be done without
explication of the knowledge underlying the alternatives.

Every technology has a natural "technological niche" (a phrase used by Egon Loebner to mark the
parallels between the evolution of technology and the evolution of life forms).  Expert systems,
because their design is constrained not only by the demands of problem solving but also by
the Transfer of Expertise, are directly involved in moving the technology of computation toward
its niche.  The eventual niche of computation lies in the interactions of people's knowledge--in
systems that allow people to understand more together than we can understand alone. In other
words, in the long run it is not important whether machines can "think" or not;  it is
only important that they help us think.

The Limitations of Expert Systems

Current research in AI laboratories that primarily focusses on expert systems is conceived in terms
of issues like the following:

Learning. How is it possible for a system to improve through its own experience,
so that we needn't add knowledge from an expert one piece at a time (the
"knowledge acquisition bottleneck", as it is called).

The two-expert problem.  How can the "knowledge" of two experts be used, e.g.,
in systems designed as decision aids for policy makers, where the experts' biases
and other differences are of interest.  Unfortunately, the differences between
experts involve experiences and values that go beyond what easily fits into current
"representations of knowledge" like rules and frames.  This is the area from which
my own research originated.

Teaching: Exemplified by the work of Bill Clancey, the question is how to use the
knowledge in a Expert System not only to do the original task of problem solving,
but also as a resource for human learning.  Clancey's work has shown that there
are many things that the expert knows which, although they don't surface when he
is solving problems, become central when he is teaching novices.  For example,
consider MYCIN, which can diagnose meningitis and bacteremia infections as



Systems That Know That They Don't Understand

4

effectively as physicians who are experts in this area:  MYCIN cannot begin to
answer the question "What is a disease?"

Deep knowledge: This particularly important problem concerns using some model
of the domain (e.g., the circuit diagrams of a computer) as a part of the knowlege
base.  There is no depth of knowledge in current expert systems.

Meta-knowlege: The ability of systems to know something about themselves and
about what they know.

The bottom line is that expert systems as they were first developed, e.g., in MYCIN, serve a very
limited range of applications: only certain types of knowledge (e.g., heuristic rules), for certain
types of reasoning (e.g., diagnosis), in certain knowledge-related activities (e.g.,
consultation), obtainable from experienced people who are in demand by less experienced people
who, nevertheless, share all the same terms, procedures, theories, goals, and values as the
experts.  And of course, much of the pressure for pushing out from this beachhead comes from
our inability to build potentially profitable systems because they involve different types of
knowledge, different knowledge-related activities, etc.

It is my belief that these limitations are not wrinkles that will be worked out as the AI research
program develops.  Rather, they reflect certain assumptions about the nature of Mind that underly
not only Expert Systems research, but all work in AI as the field is currently understood.
 Working within these assumptions, while on the one hand making the dramatic scientific success
possible, has at the same time created an impasse for further research.

The Origins of Artificial Intelligence

The intellectual currents of their times direct scientists to the study of certain phenomena as
opposed to others.  For the evolution of AI as a scientific discipline, the two most important forces
in the intellectual environment of the 1930s and 1940s were mathematical logic, which had
been under rapid development since the end of the 19th century, and new ideas about
computation.  The logical systems of Frege, Whitehead and Russell, Tarski, and others showed
that some aspects of reasoning could be formalized in a relatively simple framework.

Ideas about the nature of computation, due to Church, Turing, and others, provided the link
between the notion of formalization of reasoning and the computing machines about to be
invented.  What was essential in this work was the abstract conception of computation as symbol
processing.   Turing, who has been called the Father of AI, not only invented a universal, model
of non-numerical computation, but also argued directly for the possibility that computating
machines could behave in a way that would be perceived as intelligent.

What eventually connected these diverse ideas was, of course, the development of the computing
machines themselves, conceived by Babbage, and guided in this century by Turing, von
Neumann, and others.  It was not long after the machines became available that people began to
try to write programs to solve puzzles, play chess, and translate texts from one language to
another--the first AI programs.  What was it about computers that triggered the development of
AI?  The single attribute of the new machines that brought about the emergence of the new science
was their inherent potential for complexity, encouraging the development of new and more direct
ways of describing complex data structures and procedures with hundreds of steps.
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As Pamela McCorduck notes in her entertaining historical study of AI, Machines Who Think,
there has been a long-standing connection between the idea of complex mechanical devices and
intelligence. Starting with the fabulously intricate clocks and mechanical automata of past
centuries, people have made an intuitive link between the complexity of a machine's operation and
some aspects of their own mental life.  Modern computer systems are orders of magnitude more
complex than anything man has built before, and AI systems are among the most complex
computer programs.

The reason is that after all the levels of interpretation are peeled away, the computer performs its
calculations following the step-by-step instructions it is given--the method must be specified in
complete detail!  Most computer scientists are concerned with designing new algorithms,
new languages, and new machines for performing tasks like solving equations and alphabetizing
lists--tasks that people perform using methods they can explicate.  However, people cannot
specify in detail how they decide which move to make in a chess game or how they determine that
two sentences "mean the same thing."

The realization that the detailed steps of almost all intelligent human activity were unknown
marked the beginning of Artificial Intelligence as a separate part of Computer Science.  AI
researchers investigate different types of computation and different ways of describing
computation, in an effort not just to create intelligent artifacts, but also to understand
what intelligence is.  A basic tenet is that human intellectual capacity will be best described in the
same terms as those they invent to describe their programs.  However, they are just beginning to
learn enough about those programs to know how to describe them scientifically--in terms of
concepts that illuminate their nature and differentiate among fundamental categories.  And they
have started with the most obviously complex processes: deduction, parsing, search, etc.

Thus AI defined itself in terms of reasoning or problem solving as knowledgable activity in and of
itself.  Researchers dealt with knowledge as a static and manipulatable entitity, like statements in
logic.  They built their research on the implicit assumption that Mind was a process for acquiring
and manipulating these objects.  Within this framework, Expert Systems is the logical extreme of
AI research.  Expert systems are an optimal solution to the problem of reasoning with fixed,
explicit goals; optimal in the sense that the goals describable to expert systems approximate the
most meaningful problems people have that remain devoid of personal opinions, values, and
goals.

As Newell and Simon, founders of the field of AI, point out in the Historical Epilog to their
classic work Human Problem Solving, there were other strong intellectual currents that converged
in the middle of this century in the popel who would found the science of Artificial Intelligence.
The concepts of cybernetics and self-organizing systems of Wiener, McCulloch, and others deal
with the macroscopic behavior of "logically simple" systems.  Although the cyberneticians
influenced AI, as they influenced many fields, with the broad applicability of their ideas, AI
research turned away from self-organization.  (There are exceptions:  My own education in AI
was strongly influenced by Terry Winograd and through him by the work of the cyberneticians
Humberto Maturana and Gregory Bateson.)

A system is a (self-organizing) process in relation to its environment.  When you remove the
process from the environment, it is still a process, but it is not a system.  In this sense, expert
systems, and AI systems generally, are not really systems!  They model the reasoning process,
but conduct it outside of the context of human experience and purpose.  These programs
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take descriptions of problems and then solve them, whereas a Mind must cotemporaneously
reduce its "goals" to descriptions of solvable problems, and learn more about the goals themselves
while it tries to solve those (mythical) problems.  To do this, a system must contain more than just
a goal description and the appropriate "knowledge," it must have a record of it's own experience
and the ability to reformulate its understanding of itself and its goals.

A Classification of Understandings

The introduction to this paper describes a science as a process of "coming to an understanding."
The theory of understandings presented here tries to capture that type of process in computational
terms.  It is based on the fundamental notions of understandings and phenomena.  An
interpretive process is one which builds an understanding of the phenomena it experiences, just as
a science builds an understanding of the experimental results.  If that process is embedded in those
phenomena, the way that the nervous system is embedded in experience, and if it seeks to
maintain itself and achieve its goals, then the process is a system in the environment.  

The theory concerns how understandings evolve through several qualitatively different stages:
recognition of previously seen phenomena, classification (using concept formation), empirical
associations (e.g., heuristic knowledge), etc. At the core of this computational theory is a "frame-
like" data structure [Minsky], the UPLEX, which reflects a classification of qualitatively (vis a vis
computation) different types of understandings.   In particular, the UPLEX includes in the
representation of an understanding the following aspects:

Experience Base:  The phenomena about which this is an understanding.

Language:  The features used for discriminating among phenomena, the terms used
to express these cuts (defined extensionally over the experience base), and the
syntax used to express statements in the Model.  (See also [Wehyrauch].)

Model:  The classification schemes, associations, rule-sets, theories, and good
stories through which the phenomena can be made to "make sense."

Resources:  The actions, methods, procedures, tests, and tricks available to the
understander.

Anomalies:  The caveats, dangers, and special cases known to be exceptions to the
current model(s).  E.g., cases that were treated according to prescribed procedures
without success.  (The point is that the understander may not be able to
discriminate these case in its lexicon, but nevertheless remembers them.)  Once
again, as with all "experience" knowledge, all perceptions including "internal" ones
(feelings) are included in the trace.

Multiplicity:  The knowledge of other understandings and understanders. E.g., that
there is another theory or another expert who has different values or another model
that might be used if this one doesn't seem to be working.

History:  The evolution of the UPLEX.  E.g., successes, goof-ups, bug
fixes, resolutions of previous anomalies and conflicts.

Hot Spots:  The active tests, experiments, on-going studies, open
questions, disputes, etc. which relate to the growth of this understanding. Hot
spots focus attention on the types of experiences where computational
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resources must be applied if  the understanding is to grow.

Goal:  An explicit representation of the goal(s) toward which this understanding
has proven or might prove useful.  Knowledge of the goal evolves with the
understanding.  Taking different roles or perspectives cause different
understanders to build different understandings of the same phenomena.  Since the
goal is itself an understanding--one's understanding of what one thinks he's doing-
-it can be represented by a UPLEX and may be incomplete, experiential, or multiple.

Systems That Know That They  Don't Understand

In summary, I believe that from the cybernetics perspective, one must view understanding as an
activity of a system, and not as a property.  In the words of my friend Bill Jayne, intelligence is a
muddling process, not a modeling process.  Furthermore, the goal of this process is not
separable from the internal goals of the system, like survival.  Work in AI to date has begun to
develop a language for describing and differentiating such processes, including concepts like
process, procedure, interpreter, bottom-up and top-down processing, objected-oriented
programming, demons.  And work on Transfer of Expertise has begun to focus on tools
(programming environments) that interact with people in the understanding process.  

I am developing a system called CONSENSYS, based on the UPLEX technology, which is tool for
people who need to cooperatively solve a problem that is more important than their recognized
differences.  It is not a tool for reaching overall agreement or resolution of differences--only for
identifying and setting aside those differences in order to cooperate for mutual benefit.  In other
words, CONSENSYS is a tool for coming to an understanding.

Finally, I would like to suggest some "products" that will be based on this next-generation
technology.  First, there will be better expert systems, more versatile in their capabilities, more
understandable, more debuggable, less single-minded (multiple experts), and generally more
useful.  The next step, I believe, will be tools for organizational cooperation, e.g., tools
for business and government planning.  And finally, there will be political CONSENSYS.  But of
course, viewed from the perspective of Expert Systems research, the problem with politics is that
everybody is an expert!
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