
Towards a Knowledge-Level Software Platform
A position paper for the International Semantic Web Workshop

Stanford, July, 2001

Avron Barr, Shirley Tessler and Buddy Kresge*

A software platform is, to students of the software industry, what volcanoes are to geologists
– dramatic manifestations of powerful subterranean forces, often colossal, sometimes
threatening. There have been many software platforms over the years – questions as to their
relative importance or goodness must be left to a longer discussion. As the Semantic Web
community works out a way to author, encode, interpret and manage machine-readable
knowledge that is applicable across a range of systems and subject domains, we may be
witnessing the emergence of a major new software platform.

Historically, software platforms have varied widely in terms of their impact on the evolution of
computing, measured, for example, by the range of applications that run on them, and thus the
number of lives they touch. To become an OS360 or Windows behemoth, a platform must not
only embody the right mix of technologies at the right time, but must additionally serve the
needs of three disparate constituencies:

• Solve the real needs of customers. For example, Windows established itself among PC
manufacturers by allowing them great flexibility in components and bus designs, while
largely insulating software publishers and corporate application developers from the
complexity that resulted. Market share on new and installed PCs in turn attracted hundreds
of independent software publishers. Customers care about well-supported software that is
compatible with other systems already in place. Products should also reduce customers’
operating costs, comply with standards, and have lots of utility (applications), largely
supplied by the independent publishers and corporate applications developers.

• Create opportunities for software publishing companies and, to a lesser extent, software
services firms. Independent software publishers decide whether to publish to the platform –
without them you don’t actually have a platform, just a tool. Publishers care about market
size, primarily, as well as the talent pool, tools, support/training, long-term platform
strategy, and fairness – a level playing field. Of course, the platform also creates
opportunities for systems integrators and for software developers.

• Win the hearts and minds of software development teams. One dimension of the
importance of a software platform is surely its acceptance by a large community of
software professionals (not just programmers, but the whole team). Software developers,
who mostly go where the money is, will additionally be attracted to platforms with minimal
stupidity, powerful tools, language-independence, and a rational, if not elegant, design.
They also like openness, so that they can build their own tools.

Whatever technology is involved, a software platform results from a complex social arrangement
among these stakeholders.

* Barr and Tessler are strategy consultants for software companies, software startups, investors, and government
planners through their firm, Aldo Ventures. Kresge is a knowledge engineer at Essential Logic and a specialist in
the healthcare benefits knowledge domain.

While it may seem premature to inquire about the impact of the Semantic Web on the structure
of the software industry, history has shown that the eventual outcome of the platform-formation
process is often shaped early in the evolution of the platform. Breadth of vision, choice of
partners, openness, and dumb luck are all major success factors.

Who Touches The Knowledge?

The Semantic Web involves a nexus of technologies: distributed computing, HTTP, XML, RDF,
frame-like KR, agents, inference engines, and more. To see the direction matters must take to
produce a new software platform, consider the following application space in U.S. corporate
healthcare benefits (healthcare providers, insurers, corporate HR, and employees):

• Insured employees can inquire about their benefits and options via their company’s
portal, at work or at home.

• Corporate HR departments can do benefits planning, get bids from insurance carriers, and
easily exchange real-time information with business partners, like enrollment and
eligibility outsourcers, based on their unique, complex employee group structure.

• Insurers, service providers and insured patients can communicate about claims and bills.

• Healthcare providers can get approvals in real time. Physicians can know instantly which
alternative medications are covered by a particular patient’s insurance plan.

Until all the players’ websites are semantically enhanced, the full value of the shared knowledge
cannot be realized. And there are thousands of domains like healthcare benefits, where
knowledge-enabled applications make sense. The huge number of different applications and
knowledgebases that must be built and maintained by a wide variety of people, make this look to
us like the makings of a major software platform: these software developers will want to share
tools and infrastructure to “raise the level” of their knowledge-level programming.

In addition to tools for programmers, the effective use of machine-readable knowledge in an
industry requires that a large number of knowledge editing tools be created, so that different
people in different roles can author, test, share, audit, and maintain the knowledgebases in a
natural way. (Out-of-date knowledge is worse than useless.) The platform and infrastructure
must support the construction of these tools. It must also support the evolution of abstractions
that tie the whole industry together. In healthcare, for example, the concept of “benefit” is
associated with a set of services, a cost formula, a payment mechanism, a liability, and so on,
depending on one’s perspective.

Trilogy Corp., an early success story in the use of explicit knowledge to support e-commerce,
uses proprietary knowledge modeling tools, and scores of Stanford graduates, to maintain a
single, proprietary knowledgebase of electronic components. For the Semantic Web, thousands
of companies will be maintaining similarly complex knowledgebases. The tools must support
sharing of industry abstractions and knowledge maintenance by non-PhD’s! Eventually, there
will likely be several layers of tools – another indication that a software platform might emerge.

Of course, there is a lot of money to be made by companies who enable this next level of e-
commerce, where applications can offer increased functionality by accessing companies’
published knowledgebases. But the infrastructure that must be built to enable this kind of
knowledge sharing may have implications beyond commerce: explicating what we think we all
know is a first step toward coming to a common understanding.

	Towards a Knowledge-Level Software Platform �A position paper for the International Semantic Web Workshop�Stanford, July, 2001
	Avron Barr, Shirley Tessler and Buddy Kresge
	Who Touches The Knowledge?

